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Abstract
We analyse the psu(2, 2|4) supersymmetry algebra of a superstring propagating
in the AdS5 × S5 background in the uniform light-cone gauge. We consider
the off-shell theory by relaxing the level-matching condition and take the limit
of infinite light-cone momentum, which decompactifies the string world-sheet.
We focus on the psu(2|2) ⊕ psu(2|2) subalgebra which leaves the light-cone
Hamiltonian invariant and show that it undergoes extension by a central element
which is expressed in terms of the level-matching operator. This result is in
agreement with the conjectured symmetry algebra of the dynamic S-matrix in
the dual N = 4 gauge theory.

PACS numbers: 11.25.Hf, 11.25.−w, 11.30.Pb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding the symmetries of physical systems usually leads to the most elegant way of
solving them. The Green–Schwarz string theory on the AdS5 × S5 background [1] presents
a prime example of a system with a very large number of symmetries. The manifest global
symmetry of the string sigma-model is given by the PSU(2, 2|4) supergroup, an isometry
group of the target coset space. Moreover the world-sheet theory is a classically integrable
model [2], possessing thus an infinite number of (non)local integrals of motion. Finally, being
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a superstring theory, it possesses the local gauge symmetries of world-sheet diffeomorphisms
and the fermionic κ-symmetry.

Nevertheless, the quantization of the superstring on AdS5 × S5 in a covariant fashion is
presently out of reach. However, fixing the world-sheet gauge symmetry and reducing the
theory to only physical degrees of freedom simplifies the system and allows one to invoke the
notion of asymptotic states and the machinery of the string S-matrix [3–5]. Based on extensive
work [6–11] it is becoming more and more apparent that a particularly convenient world-
sheet gauge choice is the so-called generalized uniform light-cone gauge [8, 10]. World-sheet
excitations in this gauge are closely related to the spin chain excitation picture appearing on the
gauge theory side, and thus make the link between the two more transparent. Also, similarly
as in flat space, this is the only gauge which makes the Green–Schwarz fermions tractable.

The generalized uniform light-cone gauge, however, has the unpleasant feature that
the gauge-fixed action does not possess world-sheet Lorentz invariance. The fact that this
symmetry is absent makes the construction of the world-sheet S-matrix particularly involved:
standard constraints on the form of S-matrix arising from the requirement of Lorentz invariance
cannot be directly implemented, but require subtle constructions [12, 13]. It is thus extremely
important to understand the symmetries of the world-sheet theory in this gauge, how they
constrain the form of the S-matrix, and how they are connected with the symmetries present
in the gauge theory.

The generators of the superisometry algebra psu(2, 2|4) of the string sigma-model can be
split into two groups: those which (Poisson) commute with the Hamiltonian and those which
do not. The former comprise the su(2|2) ⊕ su(2|2) subalgebra of the full psu(2, 2|4) algebra,
sharing the same central element which corresponds to the Hamiltonian. Another separation
of the psu(2, 2|4) generators is into dynamical and kinematical generators, depending on
whether they do or do not depend on the unphysical field x−.

There are three important facts related to the presence of the unphysical field x− in the
light-cone world-sheet theory. One is that when solved in terms of physical fields, x− is a
non-local expression. Second is that the zero mode of the field x− is a priori non-zero and
has a non-trivial Poisson bracket with the total light-cone momentum P+. This implies that
dynamical charges change the light-cone momentum P+. It also follows, that the zero mode
part of the operator eiαx− plays precisely the role of a ‘length changing’ operator, given that in
the uniform light cone gauge, the total light cone momentum P+ is naturally identified with the
circumference of the world-sheet cylinder. However, and this shall be exploited extensively
in the present paper, in the limit of infinite light-cone momentum P+, the fluctuations of the
P+ are irrelevant, and the zero mode of x− can be thus consistently ignored. Thirdly, the
differentiated field x ′

− is a density of the world-sheet momentum related to the presence of
rigid symmetries in the spacelike σ -direction of the light-cone gauge fixed string action. In the
case of closed strings, the periodicity of fields implies that the total world-sheet momentum
pws has to vanish. This constraint is called the level-matching condition.

In order to introduce the concept of the world-sheet excitations as well as the world-sheet
S-matrix, one needs to: (a) relax the level-matching condition and (b) consider the limit
P+ → ∞. If level-matching is not satisfied, we will refer to the theory as ‘off-shell’. The
limit (b) is necessary in order to define asymptotic states and it basically defines the gauge
fixed world-sheet theory on the plane, rather than on a cylinder of circumference P+ [14–20].
In this paper, we will restrict the consideration to this limit, only briefly commenting on the
finite P+ configurations in the discussion.

If the level-matching condition holds, the su(2|2)⊕ su(2|2) subalgebra of the psu(2, 2|4)

algebra is spanned by those generators which commute with the world-sheet Hamiltonian.
Giving up the level-matching condition in string theory in principle could spoil the on-shell



The off-shell symmetry algebra of the light-cone AdS5 × S5 superstring 3585

psu(2, 2|4) symmetry algebra of the world-sheet theory and in particular the centrality of the
Hamiltonian with respect to the su(2|2) ⊕ su(2|2) subalgebra. The main goal of this paper is
the derivation of the string world-sheet symmetry algebra in the case when the level-matching
is relaxed.

In N = 4 gauge theory the analogue of the level-matching condition is implemented by
considering gauge-invariant operators, i.e. traces of products of fields. Hence relaxing the
level-matching in string theory corresponds to ‘opening’ the trace of fields in gauge theory,
i.e considering open rather than closed spin chains. Beisert has argued in [5] that opening
the traces in gauge theory (and considering infinitely long operators) leads to a modification
of the su(2|2) ⊕ su(2|2) algebra: the algebra receives two central charges in addition to the
Hamiltonian, which are functions of the momentum carried by the one-particle excitations. The
Hamiltonian remains a central element. This centrally extended symmetry algebra beautifully
allowed for the derivation of the dispersion relation of the elementary ‘magnon’ excitations as
well as for the restriction of the form of S-matrix down to one unknown function.

The main result of this paper is the derivation of the centrally extended su(2|2)⊕ su(2|2)

algebra in string theory both at the classical and quantum level. By explicit computations,
we show that relaxing the level-matching condition in string theory in the limit of infinite
light-cone momentum necessarily leads to an enlargement of the su(2|2)⊕ su(2|2) algebra by
a common central element which is proportional to the level-matching condition. In addition,
the Hamiltonian remains central, as it was the case for the on-shell algebra.

The direct evaluation of the classical (and quantum) su(2|2) ⊕ su(2|2) algebra is
technically very difficult due to the complexity of the supersymmetry generators and the
non-canonical Poisson structure of the theory. To derive the central charges, we were thus
forced to work in an approximation scheme which we named the ‘hybrid’ expansion scheme.
Namely, in this approximation we expand all supersymmetry generators in powers of fields
(equivalently in the inverse string tension 2π/

√
λ), keeping however all dependence on the

x− field intact and rigid. More precisely, the dynamical charges depend on the x− field via
eiαx− in a multiplicative fashion. Although, when expressed in terms of the physical fields this
term is highly nonlinear, in the ‘hybrid’ expansion scheme we treat this quantity as a single
object. This allows us to determine the full, nonlinear, bosonic part of the central charges.
The fermionic part is then uniquely fixed from the requirement that the central charges vanish
on the level-matching constraint surface. Justification for the ‘hybrid’ expansion scheme is
demonstrated in section 4.

2. Gauged-fixed string sigma-model

In this section we collect the necessary background material concerning the superstring theory
on AdS5 × S5. The central object on which the construction of the string action is based on is
the well-known supersymmetry group PSU(2, 2|4). We recall [1, 21, 22] that the superstring
action S is a sum of two terms: the (world-sheet metric-dependent) kinetic term and the
topological Wess-Zumino term:

S = −
√

λ

4π

∫ r

−r

dσdτ
(
γ αβstr

(
A(2)

α A(2)
β

)
+ κεαβstr

(
A(1)

α A(3)
β

))
. (2.1)

Here
√

λ
2π

is the effective string tension, coordinates σ and τ parametrize the string world-sheet,
and for later convenience we choose the range of σ to be r � σ � r , where r is an arbitrary
constant. The standard choice for a closed string is r = π . Then, γ αβ = √−hhαβ where hαβ

is the world-sheet metric, and κ = ±1 to guarantee the invariance of the action w.r.t. to the
local κ-symmetry transformations. For the sake of clarity we choose in the rest of the paper



3586 G Arutyunov et al

κ = +1. Finally, A(i) with i = 0, . . . , 3 denote the corresponding Z4-projections of the flat
current A = −g−1 dg, where g is a representative of the coset space

PSU(2, 2|4)

SO(4, 1) × SO(5)
.

The above-described Lagrangian formulation does not seem to be a convenient
starting point for studying many interesting properties of the theory, in particular, for
analysing its symmetry algebra and developing a quantization procedure, because it suffers
from the presence of non-physical bosonic and fermionic degrees of freedom related to
reparametrization and κ-symmetry transformations. A natural way to overcome this difficulty
is to use the Hamiltonian formulation of the model. It is obtained by fixing the gauge
symmetries and solving the Virasoro constraints, the latter arise as equations of motion for
the world-sheet metric hαβ . Concerning the quantization, it should be implemented in such
a way that the global supersymmetry algebra, psu(2, 2|4), which includes the Hamiltonian,
being restricted to physical states satisfying the level-matching condition would remain non-
anomalous at the quantum level. Hopefully, the quantum Hamiltonian could be uniquely
determined in this way and then the remaining problem would be to determine its spectrum.

A suitable gauge which leads to the removal of non-physical degrees of freedom has been
introduced in [20], following earlier work in [7, 8, 10, 23, 24]. We refer to it as the generalized
uniform light-cone gauge. To impose the generalized uniform light-cone gauge we make use
of the global AdS time, t, and an angle φ which parametrizes one of the big circles of S5. They
parametrize two U(1) isometry directions of AdS5 × S5, and the corresponding conserved
charges, the spacetime energy E and the angular momentum J , are related to the momenta
conjugated to t and φ as follows:

E = −
√

λ

2π

∫ r

−r

dσpt , J =
√

λ

2π

∫ r

−r

dσpφ.

Then we introduce the light-cone variables

x+ = (1 − a)t + aφ, x− = φ − t

whose definition involves one additional gauge parameter a: 0 � a � 1. The corresponding
canonical momenta are

p− = pt + pφ, p+ = (1 − a)pφ − apt .

The reparametrization invariance is then used to fix the generalized uniform light-cone gauge
by requiring that6

x+ = τ, p+ = 1. (2.2)

The consistency of this gauge choice requires the constant r to be

r = π√
λ

P+ ≡ 1

2

∫ r

−r

dσp+, (2.3)

where P+ is the total light-cone momentum7.
Solving the Virasoro constraints, one is then left with eight transverse coordinates xM and

their conjugate momenta pM .

6 Strictly speaking, x+ can be identified with the world-sheet time τ only for string configurations with vanishing
winding number. For the general consideration, see [10, 20].
7 In fact, P+ has a conjugate variable x

(0)
− that is the zero mode of the light-cone coordinate x−. In any set of

functions which do not contain x− the variable P+ plays the role of a central element and, therefore, can be fixed to
be a constant.
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The light-cone gauge should be supplemented by a suitable choice of a κ-symmetry gauge
which removes 16 out of 32 fermions from the supergroup element g parametrizing the coset

PSU(2,2|4)

SO(4,1)×SO(5)
. The remaining 16 fermions χ have a highly non-trivial Poisson structure which

can be reduced to the canonical one by performing an appropriate nonlinear field redefinition,
see [11] for detail.

The gauged-fixed action that follows from (2.1) upon fixing (2.2) and the κ-symmetry
was obtained in [11], cf also [20]. Schematically, it has the following structure:

S =
√

λ

2π

∫ r

−r

dσ dτ(pMẋM + χ †χ̇ − H), (2.4)

where H is the Hamiltonian density which is independent of both λ and P+, and is equal to
−p−. Since p− = pt + pφ , the world-sheet Hamiltonian is given by the difference of the
spacetime energy E and the U(1) charge J :

H = −
√

λ

2π

∫ r

−r

dσp− = E − J. (2.5)

Some comments are in order. As standard to the light-cone gauge choice, the light-cone
charge P+ plays effectively the role of the length of the string: in equation (2.4) the dependence
on P+ occurs in the integration bounds only. Thus, the limit P+ → ∞ defines the theory on
a plane and, by this reason, it can be called the ‘decompactifying limit’ [14–20]. Obviously,
for the theory on a plane one should also specify the boundary conditions for physical fields.
As usual in soliton theory [25], several choices of the boundary conditions are possible:
the rapidly decreasing case, the case of finite-density, etc. In what follows we will consider
the case of fields rapidly decreasing at infinity and show that it is this case which leads to the
realization of the centrally extended su(2|2) ⊕ su(2|2) symmetry algebra.

In the particular case a = 0 we deal with the temporal gauge t = τ analysed in [8] which
implies that the light-cone charge P+ coincides with the angular momentum J . In the rest of
the paper we will be mostly concentrated with the symmetric choice a = 1

2 studied in [10, 11].
The reason is that as was shown in those papers in this gauge the Poisson structure of fermions
simplifies drastically, and that makes it easier to compute the Poisson algebra of the global
symmetry charges. All results we obtain, however, are also valid for the general a light-cone
gauge.

In what follows we find it convenient to use the inverse string tension ζ = 2π√
λ

, and to

rescale bosons (pM, xM) → √
ζ (pM, xM) and fermions χ → √

ζχ in order to ensure the
canonical Poisson brackets for the physical fields. Upon these redefinitions the Hamiltonian
(2.5) admits the following expansion in powers of ζ :

H =
∫ r

−r

dσ(H2 + ζH4 + · · ·). (2.6)

Here the leading term H2 is quadratic in physical fields, and H4 is quartic, and so on. Thus,
ζ n−1 will be multiplied by H2n containing the product of 2n fields, and the expansion in ζ is
an expansion in the number of fields. The explicit expressions for H2 and H4 were derived in
[11] and we also present them in the appendix to make the paper self-contained.

To conclude this section we remark that the light-cone gauge does not allow one to
completely remove all unphysical degrees of freedom. There is a nonlinear constraint, known
as the level-matching condition, which is left unsolved. This constraint is just the statement
that the total world-sheet momentum of the closed string vanishes, and it reads in our case as8

pws = −ζ

∫ r

−r

dσ

(
pMx ′

M − i

2
str(+χχ ′)

)
= 0. (2.7)

8 See appendix for the notations.
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The variable pws generates rigid shifts in σ and, therefore, in the limit P+ → ∞ becomes
a momentum generator on the plane. We come to the discussion of the influence of the
level-matching constraint on the supersymmetry algebra in the next section.

3. Symmetry generators in the light-cone gauge

In this section we study the general structure of the global symmetry generators in the light-
cone gauge and identify the subalgebra of symmetries of the gauge-fixed Hamiltonian. We
also reformulate a problem of computing the Poisson brackets of symmetry generators in terms
of the standard notions of symplectic geometry.

3.1. General structure of the symmetry generators

The Lagrangian (2.1) is invariant w.r.t. the global action of the symmetry group PSU(2, 2|4).
The generators of the Lie superalgebra psu(2, 2|4) are realized by the corresponding Noether
charges which comprise9 an 8 × 8 supermatrix Q. As was shown in [11], in the light-cone
gauge the matrix Q can be schematically written as follows:

Q =
∫ r

−r

dσ�U�−1. (3.1)

An explicit form of the matrix U can be found in [11] and also in A.2, formula (A.10). It is
important to note here that U depends on physical fields (x, p, χ) but not on x±. The only
dependence of Q on x± occurs through the matrix � which is of the form

� = e
i
2 x+++ i

4 x−− , (3.2)

where ± are the diagonal matrices of the form

± = diag(±1,±1,∓1,∓1; 1, 1,−1,−1). (3.3)

We recall that the field x− is unphysical and can be solved in terms of physical excitations
through the equation

x ′
− = −ζ

(
pMx ′

M − i

2
str(+χχ ′)

)
. (3.4)

Linear combinations of components of the matrix Q produce charges which generate
rotations, dilatation, supersymmetry and so on. To single them out one should multiply Q by
a corresponding 8 × 8 matrix M, and take the supertrace

QM = str(QM). (3.5)

In particular, the diagonal and off-diagonal 4×4 blocks of M single out bosonic and fermionic
charges of psu(2, 2|4), respectively.

Depending on the choice of M the charges QM ≡ QM(x+, x−) can be naturally classified
according to their dependence on x±. Firstly, with respect to x− they are divided into
kinematical (independent of x−) and dynamical (dependent on x−). Kinematical generators
do not receive quantum corrections, while the dynamical generators do. Secondly, the charges,
both kinematical and dynamical, may or may not depend on x+ = τ .

In the Hamiltonian setting the conservation laws have the following form:

dQM

dτ
= ∂QM

∂τ
+ {H,QM} = 0.

9 As explained in [26], the part of Q which is proportional to the identity matrix is not a generator of psu(2, 2|4)

and, therefore, it should be factored out.
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d

k

k

kd

d

d

d

k

k

k

k

d

d

k d

M =

Red

Blue

Figure 1. The distribution of the kinematical and dynamical charges in the M supermatrix. The
red (dark) and blue (light) blocks correspond to the subalgebra J of psu(2, 2|4) which leaves the
Hamiltonian invariant.

Therefore, the generators independent of x+ = τ Poisson-commute with the Hamiltonian. As
follows from the Jacobi identity, they must form an algebra which contains H as the central
element.

Analysing the structure of Q one can establish how a generic matrix M is split into
2 × 2 blocks each of them giving rise either to kinematical or dynamical generators. This
splitting of M is shown in figure 1, where the kinematical blocks are denoted by k and the
dynamical ones by d respectively. Furthermore, one can see that the blocks which are coloured
in red and blue give rise to charges which are independent of x+ = τ ; by this reason these
charges commute with the Hamiltonian. Complementary, we note that the uncoloured both
kinematical (fermionic) and dynamical (bosonic) generators do depend on x+.

These conclusions about the structure of M can be easily drawn by noting that � in
equation (3.2) is built out of two commuting matrices + and − (see (3.3)). For instance,
leaving in M the kinematical blocks only, i.e. M ≡ Mkin, we find that [−,Mkin] = 0 and,
therefore, due to the structure of QM, see equation (3.5), the variable x− cancels out in QM.
Explicitly one finds the following conjugation expressions with � of (3.2)

�−1Modd
dyn� = e− i

2 x−−Modd
dyn, �−1Meven

dyn � = �2Meven
dyn ,

�−1Modd
kin � = eix++Modd

kin , �−1Meven
kin � = Meven

kin

showing that the x+ = τ independent matrices are indeed given by Modd
dyn and Meven

kin , i.e. by
the red and blue entries in figure 1.

Finally, we note that the Hamiltonian itself can be obtained from Q as follows:

H = − i

2
str(Q+). (3.6)

Another integral of motion, P+, is given by

P+ = i

4
str(Q−). (3.7)

The structure of Q discussed above is found for finite r and it also remains valid in the limit
r → ∞.
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3.2. Moment map and the Poisson brackets

The group PSU(2, 2|4) acts on the coset space PSU(2,2|4)

SO(4,1)×SO(5)
by multiplications of a coset

element by an element of the group from the left. When we fix the light-cone gauge and solve
the Virasoro constraints we obtain the well-defined symplectic structure ω (the inverse of the
Poisson bracket) for physical fields. Therefore, we are now able to study the Poisson algebra
of the Noether charges corresponding to the infinitesimal global symmetry transformations
generated by the Lie algebra psu(2, 2|4). Primarily we are interested in those charges which
leave the gauge-fixed Hamiltonian and, as the consequence, the symplectic structure of the
theory invariant; the corresponding subspace in psu(2, 2|4) will be called J .

Since the symplectic form ω remains invariant under the action of J , to every element
M ∈ J one can associate a locally Hamiltonian phase flow ξM whose Hamiltonian function
is nothing else but the Noether charge QM:

ω(ξM, . . .) + dQM = 0. (3.8)

Identifying psu(2, 2|4) with its dual space, psu(2, 2|4)∗, by using the supertrace operation,
we can treat the matrix Q as the moment map [27] which maps the phase space (x, p, χ) into
the dual space to the Lie algebra:

Q : (x, p, χ) → psu(2, 2|4)∗

and it allows one to associate to any element of psu(2, 2|4) a function QM on the phase space.
This linear mapping from the Lie algebra into the space of functions on the phase space is
given by equation (3.5). The function QM appears to be a Hamiltonian function, i.e. it obeys
equation (3.8), only if M ∈ J . Although the elements of psu(2, 2|4) which do not belong to
J are the symmetries of the gauge-fixed action, they leave invariant neither the Hamiltonian
nor the symplectic structure.

As is well known [28, 29], equation (3.8) implies the following general formula for the
Poisson bracket of the Noether charges QM,{

QM1 ,QM2

} = (−1)π(M1)π(M2) str(Q[M1,M2]) + C(M1,M2), (3.9)

where M1,2 ∈ J . Here π is the parity of a supermatrix and [M1,M2] is the graded
commutator, i.e. it is the anti-commutator if both M1 and M2 are odd matrices, and the
commutator if at least one of them is even. The first term in the rhs of equation (3.9)
reflects the fact that the Poisson bracket of the Noether charges QM1 and QM2 gives a charge
corresponding to the commutator [M1,M2]. The normalization prefactor (−1)π(M1)π(M2)

is of no great importance and, as we will see later on, it is related to our specific choice of
normalizing the even elements with respect to the odd ones inside the matrix Q. The quantity
C(M1,M2) in the rhs of equation (3.9) is the central extension, i.e. a bilinear graded skew-
symmetric form on the Lie algebra J which Poisson-commutes with all QM,M ∈ J . The
Jacobi identity for the bracket (3.9) implies that C(M1,M2) is a two-dimensional cocycle
of the Lie algebra J . For simple Lie algebras such a cocycle necessarily vanishes, while for
super Lie algebras it is generally not the case. Since we consider a finite-dimensional super
Lie algebra the central extension vanishes if the element M is bosonic: C(M, . . .) = 0.

Some comments are necessary here. As we already mentioned in section 2, the usual
feature of closed string theory considered in the light-cone gauge is the presence of the level-
matching constraint pws = 0. This constraint arises from the requirement of the unphysical
field x− to be a periodic function of the world-sheet coordinate σ . The level-matching
constraint cannot be solved in classical theory, rather it is required to vanish on physical states.
Thus, before we turn our attention to the question of the physical spectrum we should treat
pws as a non-trivial variable. We will refer to a theory with a non-vanishing generator pws
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as the off-shell theory. Since the Hamiltonian contains only physical fields it commutes with
pws: {H,pws} = 0, i.e. the momentum pws is an integral of motion. The Poisson bracket (3.9)
with the vanishing central term is valid on-shell and it is the off-shell theory where one could
expect the appearance of a non-trivial central extension. Below we determine a general form
of the central extension based on symmetry arguments only and in the next section by explicit
evaluation of the Poisson brackets we justify formula (3.9) and also find a concrete realization
of C(M1,M2).

Let us note that a formula as (3.9) makes it easy to reobtain our results on the structure of
J . Indeed, from equation (3.9) we find that the invariance subalgebra J ⊂ psu(2, 2|4) of the
Hamiltonian is determined by the condition

{H,QM} = str(Q[+,M]) = 0.

Thus, J is the stabilizer of the element + in psu(2, 2|4):

[+,M] = 0, M ∈ J .

Obviously, J coincides with the red-blue submatrix of M in figure 1. Thus, for P+ being
finite10 we would obtain the following vector space decomposition of J :

J = psu(2|2) ⊕ psu(2|2) ⊕ + ⊕ −.

The rank of the latter subalgebra is 6 and it coincides with that of psu(2, 2|4). In the case of
infinite P+ the last generator decouples.

Now we are ready to determine the general form of the central term in equation (3.9).
Denote by Jeven ⊂ J the even (bosonic) subalgebra of J . It is represented by the red and
blue diagonal blocks in figure 1. Let Geven be the corresponding group. The adjoint action of
Geven preserves the Z2-grading of J . Obviously, if we perform the transformation

Q → gQg−1, M → g−1Mg

with an element g ∈ Geven the charge QM remains invariant. This transformation leaves the
lhs of the bracket (3.9) invariant. Thus, the central term must satisfy the following invariance
condition:

C(gM1g
−1, gM2g

−1) = C(M1,M2). (3.10)

It is not difficult to find a general expression for a bilinear graded skew-symmetric form on J
which satisfies this condition. It is given by

C(M1,M2) = str
((

�M1�Mt
2 + (−1)π(M1)π(M2)�M2�Mt

1

)
�
)
. (3.11)

Here

� = −1

2


c3I2 0 0 0

0 c1I2 0 0
0 0 c4I2 0
0 0 0 c2I2

, (3.12)

where I2 is the two-dimensional identity matrix and

� =


σ 0 0 0
0 σ 0 0
0 0 σ 0
0 0 0 σ

, σ =
(

0 1
−1 0

)
. (3.13)

10 As a side remark, we note that for P+ finite the subalgebra which leaves invariant both H and P+ coincides with
the even (bosonic) subalgebra Jeven of J . According to equations (3.6) and (3.7), this subalgebra arises as the
simultaneous solution of the two equations, [+,M] = 0 and [−,M] = 0, and it is represented by the red and blue
diagonal blocks in figure 1.
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Condition (3.10) follows from the form of the matrix � and the equation

J t
even� + �Jeven = 0. (3.14)

The coefficients ci, i = 1, . . . , 4 can depend on the physical fields and they are central w.r.t.
the action of J :

{ci,QM} = 0, M ∈ J .

By using equation (3.11) one can check that the cocycle condition for C(M1,M2) is trivially
satisfied. In accordance with our assumptions, C(M1,M2) does not vanish only if both M1

and M2 are odd.
Taking into account thatJ contains two identical subalgebras psu(2|2) we can put c1 = c3

and c2 = c4. Thus, general symmetry arguments fix the form of the central extension up to
two central functions c1 and c2. Since we consider the algebra psu(2, 2), which is the real
form of psl(2|2), the conjugation rule implies that c1 = −c∗

2. In the next section we compute
the Poisson brackets of the Noether charges and determine the explicit form of c ≡ c1.

3.3. Explicit basis

In what follows we find it convenient to pick up a basis in the space of the Noether charges QM
with M ∈ J and write down the bracket (3.9) for the corresponding basis elements. Since
J contains two identical psu(2, 2) subalgebras it is enough to analyse the Poisson brackets
corresponding to one of them. For definiteness, we concentrate our attention on the subalgebra
psu(2, 2)R which is represented in figure 1 by blue (right) blocks. For this subalgebra we
select a basis in which the fermionic (dynamical) generators are given by

Q1
1 = 1

2 str Qσ + ⊗ (�14 − �23 + P−), Q1
2 = str Qσ + ⊗ �13,

Q2
2 = − 1

2 str Qσ + ⊗ (�14 − �23 − P−), Q2
1 = −str Qσ + ⊗ �42

(3.15)

and their conjugate charges Q̄α
a are

Q̄1
1 = − 1

2 str Qσ− ⊗ (�14 − �23 + P−), Q̄1
2 = −str Qσ− ⊗ �13,

Q̄2
2 = 1

2 str Qσ− ⊗ (�14 − �23 − P−), Q̄2
1 = str Qσ− ⊗ �42.

(3.16)

On the other hand, the bosonic (kinematical) charges are defined as

L1
1 = i

2
str QP +

2 ⊗ (�14 − �23) , L2
2 = −L1

1,

L1
2 = −i str QP +

2 ⊗ �13, L2
1 = −i str QP +

2 ⊗ �24,

(3.17)

and

R1
1 = i

2
strQP −

2 ⊗ (�14 − �23) , R2
2 = −R1

1,

R1
2 = i str QP −

2 ⊗ �13, R2
1 = i str QP −

2 ⊗ �24.

(3.18)

We refer the reader to A.1. for notations used here.
Rewriting the bracket (3.9) in this basis we obtain the following relations:{

Ra
b , J

c
} = δc

bJ
a − 1

2δa
bJ

c,
{
Lα

β, J γ
} = δ

γ

β J α − 1
2δα

βJ γ ,{
Qα

a , Q̄b
β

} = δb
aL

α
β + δα

βRb
a + 1

2δb
aδ

α
βH,{

Qα
a ,Q

β

b

} = εαβεabc,
{
Q̄a

α, Q̄b
β

} = εabεαβc∗.

(3.19)

Here in the first line we have indicated how the indices a and γ of any Lie algebra generator
transform under the action of the bosonic subalgebras generated by Ra

b and Lα
β . In the next

section we are going to derive the so far undetermined central function c in terms of physical
variables of string theory.
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4. Deriving the central charges

Given the complex structure of the supersymmetry generators in the light-cone gauge as well
as the corresponding Poisson structure of the theory, the direct computation of the classical and
quantum supersymmetry algebra does not seem to be feasible. Hence, simplifying perturbative
methods need to be applied. The perturbative expansion of the supersymmetry generators in
powers of ζ = 2π√

λ
or, equivalently, in the number of fields defines a particular expansion

scheme. This expansion, however, does not allow one to determine the exact form of the
central charges because they are also expected to be non-trivial functions of ζ . To overcome
this difficulty in this section we describe a ‘hybrid’ expansion scheme which can be used to
determine the exact form of the central charges. To be precise we determine only the part of
the central charges which is independent of fermionic fields. We find that this part depends
solely on the piece of the level-matching constraint which involves the bosonic fields. Since
the central charges must vanish on the level-matching constraint surface, the exact form of the
central charges is, therefore, unambiguously fixed by its bosonic part.

More precisely, a dynamical supersymmetry generator has the following generic structure:

QM =
∫

dσ eiαx−�(x, p, χ; ζ ). (4.1)

Depending on the supercharge, the parameter α in the exponent of (4.1) can take two values
α = ± 1

2 . Here the function �(x, p, χ; ζ ) is a local function of transverse bosonic fields and
fermionic variables. It depends on ζ , and can be expanded, quite analogous to the Hamiltonian,
in power series

�(x, p, χ; ζ ) = �2(x, p, χ) + ζ�4(x, p, χ) + · · · .
Here �2(x, p, χ) is quadratic in fields, �4(x, p, χ) is quartic and so on. Clearly, every term
in this series also admits a finite expansion in number of fermions. In the usual perturbative
expansion we would also have to expand the non-local ‘vertex’ eiαx− in powers of ζ because
x ′

− ∼ −ζpx ′ + · · ·. In the hybrid expansion we do not expand eiαx− but rather treat it as a rigid
object.

The complete expression for a supercharge is rather cumbersome. However, we see that
the supercharges and their algebra can be studied perturbatively: first by expanding up to the
given order in ζ and then by truncating the resulting polynomial up to the given number of
fermionic variables. Then, as was discussed above the exact form of the central charges is
completely fixed by their parts which depend only on bosons. Thus, to determine these charges
it is sufficient to consider the terms in QM which are linear in fermions, and compute their
Poisson brackets (or anticommutators in quantum theory) keeping only terms independent of
fermions. This is, however, a complicated problem because the Poisson brackets of fermions
appearing in (3.1) have a highly non-trivial dependence on bosons, see [11] for details. It
was shown in [11] that to have the canonical Poisson brackets one should perform a field
redefinition which can be determined up to any given order in ζ . Taking into account the field
redefinition, integrating by parts if necessary, and using the relation x ′

− ∼ −ζpx ′ + · · ·, one
can cast any supercharge (4.1) to the following symbolic form:

QM =
∫

dσ eiαx−χ · (ϒ1(x, p) + ζϒ3(x, p) + · · ·) + O(χ3), (4.2)

where ϒ1 and ϒ3 are linear and cubic in bosonic fields, respectively. The explicit form of the
supercharges expanded up to the order ζ can be found in the appendix.
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It is clear now that the bosonic part of the Poisson bracket of two supercharges is of the
form

{Q1,Q2} ∼
∫ ∞

−∞
dσ ei(α1+α2)x−

(
ϒ

(1)
1 (x, p)ϒ

(2)
1 (x, p)

+ ζ
(
ϒ

(1)
1 (x, p)ϒ

(2)
3 (x, p) + ϒ

(1)
3 (x, p)ϒ

(2)
1 (x, p)

)
+ · · · ), (4.3)

where Q1,2 ≡ QM1,2 . Computing the product ϒ
(1)
1 (x, p)ϒ

(2)
1 (x, p) in the case α1 = α2 =

±1/2, we find that it is given by

ϒ
(1)
1 (x, p)ϒ

(2)
1 (x, p) ∼ 1

ζ
x ′

− +
d

dσ
f (x, p), (4.4)

where f (x, p) is a local function of transverse coordinates and momenta. The first term in
(4.4) nicely combines with e±ix− to give d

dσ
e±ix− , and integrating this expression over σ , we

obtain the sought for central charges∫ ∞

−∞
dσ

d

dσ
e±ix− = e±ix−(∞) − e±ix−(−∞) = e±ix−(−∞) (e±ipws − 1), (4.5)

where we take into account that x−(∞) − x−(−∞) = pws.
Making use of the particular basis described in the previous section and imposing the

boundary condition x−(−∞) = 0, we identify the exact expression for the central function c
in equations (3.19):

c = 1

2ζ
(eipws − 1). (4.6)

The algebra (3.19) with the central charges of the form (4.6) perfectly agrees with that
considered in [5] in the field theory context.

It is worth noting that there is another natural choice of the boundary condition for the
light-cone coordinate x−:

x−(+∞) = −x−(−∞) = pws

2
.

This is the symmetric condition which treats both boundaries on the equal footing, and leads
to a purely imaginary central charge

c = i

ζ
sin

(pws

2

)
. (4.7)

It is obvious from (4.5) that different boundary conditions for x− lead to central charges which
differ from each other by a phase multiplication. This freedom in the choice of the central
charge follows from the obvious U(1) automorphism of the algebra (3.19): one can multiply
all supercharges Qα

a by any phase which in general may depend on all the central charges.
Since we already obtained the expected central charges, the contribution of all the other

terms in (4.3) should vanish. Indeed, the second term in (4.4) contributes to the order ζ in the
expansion as can be easily seen integrating by parts and using the relation x ′

− ∼ −ζpx ′ + · · ·.
Taking into account the additional contribution to the terms of order ζ in (4.3), we have
checked that the total contribution is given by a σ -derivative of a local function of x and p,
and, therefore, only contributes to terms of order ζ 2.

We have verified up to the quartic order in fields that the Poisson bracket of supercharges
with α1 = −α2 gives the Hamiltonian and the kinematic generators in complete agreement
with the centrally extended su(2|2) algebra (3.19).

The next step is to show that the Hamiltonian commutes with all dynamical supercharges.
As was already mentioned, this can be done order by order in perturbation theory in powers of
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the inverse string tension ζ and in number of fermionic variables. We have demonstrated that
up to the first non-trivial order ζ the supercharge Q truncated to the terms linear in fermions
indeed commutes with H . To do that we need to keep in H all quadratic and quartic bosonic
terms, and quadratic and quartic terms which are quadratic in fermions, see the appendix for
details.

The computation we described above was purely classical, and one may want to know if
quantizing the model could lead to some kind of an anomaly in the symmetry algebra. We have
computed the symmetry algebra in the plane-wave limit where one keeps only quadratic terms
in all the symmetry generators, and shown that all potentially divergent terms cancel out and
no quantum anomaly arises. As a result, one gets again the same centrally extended su(2|2)

algebra (3.19) with the central charges 1/ζ(e±ipws − 1) replaced by their low-momentum
approximations ∓i

∫ ∞
−∞ dσ

(
pMx ′

M − i
2 str(+χχ ′)

)
.

Thus, we have shown that in the infinite P+ limit and for physical fields chosen to rapidly
decrease at infinity the corresponding string model enjoys the symmetry which coincides with
two copies of the centrally extended su(2|2) algebra (3.19) sharing the same Hamiltonian.

5. Concluding remarks

The main focus of this paper has been on the analysis of the off-shell string symmetry algebra
in the limit of infinite light-cone momentum P+. Relaxing the level-matching condition
brings only one modification in this case: namely, the algebra psu(2|2) ⊕ psu(2|2) undergoes
extension by a new central charge proportional to the level-matching condition.

The physically more relevant situation, however, corresponds to the case of a finite light-
cone momentum. For P+ finite the zero mode of the conjugate field x− has to be taken into
account. Also, since the length of the string is finite, transverse fields do not have to vanish at
the string end points. So the question arises what is the symmetry algebra in this case?

Recall that relaxing the level-matching condition for finite P+ means

x−(r) − x−(−r) = pws, −r � σ � r, r = πP+√
λ

,

which implies that the Poisson bracket of the dynamical supercharge Q, equation (4.1), with
the level-matching generator is

1

ζ
{pws,Q} =

∫ r

−r

dσ∂σQ = �(r) eiαx−(−r)(eiαpws − 1) = 0.

Hence this Poisson bracket does not vanish, since �(r) = �(−r) is non-zero in the finite
P+ case. Similarly the Poisson bracket of the same supercharge with the Hamiltonian will be
non-vanishing. Thus, we see that the off-shell extension of the theory does not allow one to
maintain the psu(2, 2|4) symmetry algebra for a string of finite length.

It should be further noted that an off-shell theory is not uniquely defined. Indeed, one can
use the level-matching generator to modify the Hamiltonian

H → H + cnp
n
ws,

where the coefficients cn might depend on physical fields. On the states satisfying the condition
of level-matching the new Hamiltonian reduces to the original one. The absence of the standard
psu(2, 2|4) symmetry in an off-shell theory does not a priori preclude the existence of new
hidden symmetries of the off-shell Hamiltonian. Their discovery would provide a substantial
step in understanding the string dynamics for the physically relevant situation of the finite
light-cone momentum.
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In the hybrid expansion used in our paper, the crucial role in deriving the nonlinear central
charges, was played by the ‘vertex’ eiαx−

. The question is what is the physical meaning of this
object? To see this, consider the quantum theory. The variable x−(s) contains a zero mode11

x̂− which is conjugate to the operator P̂ +,

[P̂ +, x̂−] = −i.

Thus, if we consider a state |P+〉 with a definite value of P̂ +|P+〉 = P+|P+〉 then a state eiαx̂− |P+〉
carries a new value of P+:

P̂ + eiαx− |P+〉 = (α + P+) eiαx− |P+〉.
Since in the light-cone approach P+ is naturally identified with the length of the string, it is
appropriate to call eiαx− the length-changing operator. The Hilbert space of the corresponding
theory is necessarily a direct sum: H = ∑

P+
HP+ of the spaces HP+ corresponding to an

individual eigenvalue of the operator P̂ +.
This brief discussion of the light-cone string theory for finite P+ clearly demonstrates that

the latter carries many subtleties with respect to the infinite P+ limit, which for sure require
further investigation.
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Appendix

A.1. The gauge-fixed Hamiltonian

The Hamiltonian for physical excitations arising in the light-cone gauge was found in [11].
The gauge choice made in [11] is however not exactly the same as equation (2.2) adopted
here. Also the theory in [11] is defined on the standard interval for σ : −π � σ � π . In order
to make a connection with the results by [11] we choose the variable p+ there to be equal to
p+ = 2P+, where P+ is identified with the total momentum in (2.3). To justify our choice we
note that with p+ = 2P+ the gauge-fixed action of [11] can be schematically represented in
the form

S = P+

∫ π

−π

dσ dτ

2π
(pMẋM + χ †χ̇ − H), (A.1)

where H is the P+-independent Hamiltonian density, (xM, pM) with M = 1, . . . , 8 are
transverse coordinates and their conjugate momenta, and χ encodes the fermionic variables.
Since we are interested in the limit of infinite P+, it is appropriate to make a rescaling
σ →

√
λ

P+
σ . Upon this rescaling the action (A.1) turns precisely into equation (2.4) of the

11 This is an integration constant arising upon integrating equation (3.4).



The off-shell symmetry algebra of the light-cone AdS5 × S5 superstring 3597

present paper with r = π√
λ
P+. As was discussed in section 2, we further supplement this

rescaling of σ with rescalings of physical variables

(xM, pM, χ) →
√

ζ (xM, pM, χ). (A.2)

This is necessary in order to ensure to have canonical Poisson brackets for physical fields.
Upon these redefinitions the Hamiltonian found in [11] turns into the one given by

equation (2.6) Explicitly, the quadratic piece of the Hamiltonian density in equation (2.6) has
the form

H2 = 1
2p2

M + 1
2x2

M + 1
2x ′2

M + 1
2 str(+χK̃χ ′tK) + 1

2 str χ2, (A.3)

while the quartic one is [11]

H4 = 1

4

[
p2

yz
2 − p2

zy
2 + (y ′2z2 − z′2y2) + 2(z′2z2 − y ′2y2) +

+ str

(
(z2 − y2)χ ′χ ′ +

1

2
[′(x),(x)](χχ ′ − χ ′χ) − 2(x)χ ′(x)χ ′

)
+

i

4
str([(x),(p)]′(K̃χtKχ − χK̃χtK))

]
+ O(χ4), (A.4)

where by O(χ4) we encode all the terms which are quartic in fermions (stated in [11]). The
transverse bosonic fields we have denoted as xM = (za, ys) with za (a = 1, 2, 3, 4) accounting
for the transverse AdS5 and ys (s = 1, 2, 3, 4) for the S5 degrees of freedom. Prime denotes
∂σ and in the fermionic sector we have introduced the following notation:

K =
(

K4 0
0 K4

)
, K̃ =

(
K4 0
0 −K4

)
,

with the matrix K4 satisfying K2
4 = −I given by

K4 =


0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

 .

We also use the notation (x) = MxM and (p) = MpM . The 8 × 8 matrices M have
the following structure:

M =
{(

γa 0
0 0

)
,

(
0 0
0 iγs

)}
(A.5)

and are written in terms of the four Dirac matrices γi . We work with the basis defined in
appendix A of [11]. For the definition of the matrices ± see equation (3.3).

The fermions enter in the above through the κ-gauge fixed 8×8 matrix χ (compare (A.6)
and (A.9) of [11])

χ =
(

0 P+η + P−θ †

−P−η† + P+θ 0

)
, P+ =

(
I2 0
0 0

)
, P− =

(
0 0
0 I2

)
, (A.6)

where

η =
4∑

i=1

η̃i�i, θ =
4∑

i=1

θ̃i�i, (A.7)
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with the Dirac matrices �i in the complex basis defined in [11], explicitly

�1 = 1

2
(γ2 − iγ1) =


0 0 0 i
0 0 0 0
0 −i 0 0
0 0 0 0

 , �2 = 1

2
(γ4 − iγ3) =


0 0 −i 0
0 0 0 0
0 0 0 0
0 −i 0 0


and �4 = (�1)

†, �3 = (�2)
†. Moreover we define the standard double index Dirac matrices

by �ab := 1
2 [�a, �b]. We also define two-dimensional projectors

P +
2 =

(
1 0
0 0

)
; P −

2 =
(

0 0
0 1

)
. (A.8)

A.2. Symmetry generators

To describe the symmetry generators Q and the gauge-fixed Hamiltonian we have to introduce
a proper parametrization of the coset space PSU(2,2|4)

SO(4,1)×SO(5)
. Following [11] we chose the coset

representative in the form

g(χ, x, t, φ) = �(t, φ)g(χ)g(x).

Here xM = (za, yi) is a short-hand notation for the transverse bosonic fields and χ denotes
the 16 physical fermions which are left upon fixing the κ-symmetry. The matrix �(t, φ) was
defined in (3.2). The element g(x) is the 8 × 8 matrix which has the following structure in
terms of 4 × 4 blocks related to the AdS and to the sphere parts respectively

g(x) =


1√

1−ζ z2
4

(
1 +

√
ζ

2 zaγa

)
0

0 1√
1+ζ

y2

4

(
1 + i

√
ζ

2 yiγi

)
 .

Finally the fermionic coset element reads [11]

g(χ) =
√

ζχ +
√

1 + ζχ2.

The 8 × 8 supermatrix Q of (3.1) is then defined by [11]

Q =
∫ r

−r

dσ�U�−1, (A.9)

where

U = g(χ)g(x)

(
π +

i

2
g(x)K̃F t

σKg(x)−1

)
g(x)−1g(χ)−1. (A.10)

Here K and K̃ have been defined above. We also have

Fσ =
√

ζ
(√

1 + ζχ2∂σχ − χ∂σ

√
1 + ζχ2

)
and π is defined by

π = i

4
π++ +

i

4
π−− +

1

2
πMM,

where

π+ = 1

G+
(2 + G−π−), π− = − G+

(
π2

M + A2
)

(
1 +

√
1 − G+G−

(
π2

M + A2
)) ,

πa =
√

ζpa

(
1 − ζ

z2

4

)
, πs =

√
ζps

(
1 + ζ

y2

4

)
.



The off-shell symmetry algebra of the light-cone AdS5 × S5 superstring 3599

Finally A2 and G± are given by

A2 = −x ′2
−G+G− +

ζz′2
a(

1 − ζ z2

4

)2 + O(χ2), G± = 1

2

(
1 + ζ z2

4

1 − ζ z2

4

± 1 − ζ
y2

4

1 + ζ
y2

4

)
.

A.3. Covariant notation

As was done in [11] we shall make use of complex fields. However, here we will denote them
in a covariant notation with upper and lower indices reflecting their charges under the four
transverse U(1) subgroups involved. The bosonic fields we denote by

Z1 = z2 + iz1; Z2 = z4 + iz3; Z2 = (Z2)
†; Z1 = (Z1)

†;
Y1 = y2 + iy1; Y2 = y4 + iy3; Y 2 = (Y2)

†; Y 1 = (Y1)
†;

P Z
1 = 1

2

(
pz

2 + ipz
1

); P Z
2 = 1

2

(
pz

4 + ipz
3

); (P Z)1 = (
P z

1

)†; (P Z)2 = (
P Z

2

)†;
P Y

1 = 1
2

(
p

y

2 + ipy

1

); P Y
2 = 1

2

(
p

y

4 + ipy

3

); (P Y )1 = (
P Y

1

)†; (P Y )2 = (
P Y

2

)†
,

with the quantum commutation relations (α, β = 1, 2 and a, b = 1, 2)[
P Z

α (σ ), Zβ(σ ′)
] = −iδβ

α δ(σ − σ ′) [(P Z)α(σ ), Zβ(σ ′)] = −iδα
βδ(σ − σ ′)[

P Y
a (σ ), Y b(σ ′)

] = −iδb
aδ(σ − σ ′) [(P Y )a(σ ), Yb(σ

′)] = −iδa
b δ(σ − σ ′),

(A.11)

analogue expressions apply at the classical level for the Poisson brackets.
We also introduce upper and lower indices for the fermionic fields defined in (A.7) by

denoting

θ̃1 = θ1 θ̃2 = θ2 θ̃3 = θ2 θ̃4 = θ1

θ̃
†
1 = θ †1 θ̃

†
2 = θ †2 θ̃

†
3 = θ

†
2 θ̃

†
4 = θ

†
1

η̃1 = η1 η̃2 = η2 η̃3 = η2 η̃4 = η1

η̃
†
1 = η†1 η̃

†
2 = η†2 η̃

†
3 = η

†
2 η̃

†
4 = η

†
1,

(A.12)

leading to the covariant anti-commutation relations

{θα(σ ), θ †β(σ ′)} = δβ
α δ(σ − σ ′)

{
θα(σ ), θ

†
β(σ ′)

} = δα
βδ(σ − σ ′)

{ηa(σ ), η†b(σ ′)} = δb
aδ(σ − σ ′)

{
ηa(σ ), η

†
b(σ

′)
} = δa

b δ(σ − σ ′).
(A.13)

It is useful to note the charges carried by the fields of the four U(1) subgroups involved.
For this consider the combinations S± = S1 ± S2 and J± = J1 ± J2. Then the su(2|2)R
right (blue) generators carry J− and S− charges whereas the su(2|2)L left (red) generators are
charged under S− and J−. The following tables exemplify this:

S+ S− J+ J−
Z1, (P

Z)1, Z̄1, (P̄
Z)1, 1 1 0 0

Z2, (P
Z)2, Z̄

2, (P̄ Z)2, 1 −1 0 0
Z2, (P Z)2, Z̄2, (P̄

Z)2, −1 1 0 0
Z1, (P Z)1, Z̄1, (P̄ Z)1, −1 −1 0 0

,

S+ S− J+ J−
Y1, (P

Y )1, Ȳ 1, (P̄
Y )1, 0 0 1 1

Y2, (P
Y )2, Ȳ

2, (P̄ Y )2, 0 0 1 −1
Y 2, (P Y )2, Ȳ 2, (P̄

Y )2, 0 0 −1 1
Y 1, (P Y )1, Ȳ 1, (P̄ Y )1, 0 0 −1 −1
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S+ S− J+ J−
θ1, θ

†
1 , θ̄1, θ̄

†
1, 0 1 1 0

θ2, θ
†
2, θ̄

2, θ̄ †2, 0 −1 1 0
θ2, θ †2, θ̄2, θ̄

†
2, 0 1 −1 0

θ1, θ †1, θ̄1, θ̄ †1, 0 −1 −1 0

,

S+ S− J+ J−
η1, η

†
1, η̄1, η̄

†
1, 1 0 0 1

η2, η
†
2, η̄

2, η̄†2, 1 0 0 −1
η2, η†2, η̄2, η̄

†
2, −1 0 0 1

η1, η†1, η̄1, η̄†1, −1 0 0 −1

Hence a lower (upper) index on Z, Y, P Z, P Y , θ, η, θ † and η† denotes a charge of 1 (−1) with
respect to (S+ + J+). In the above tables we have also introduced barred coordinates defined
with a flipped ‘2’ index as

Ā1 = A1, Ā1 = A1, Ā2 = A2, Ā2 = A2,

with A ∈ {Z, Y, P Z, P Y , θ, η, θ †, η†},
which are the natural objects for the su(2|2)L left (red) generators as we shall see shortly. For
the barred coordinates the index position now denotes the charge with respect to (S− + J−).
Clearly the commutation relations keep their canonical form, cf (A.11) and (A.13), in the
barred coordinates.

A.4. The explicit form of the su(2|2)R generators

Using the basis of fermionic (dynamical) generators of the right (blue) su(2|2)R algebra given
in (3.15) and (3.16) along with the concrete expression for Q in (A.9) one finds the leading
quadratic order expressions for the supercharges

Qα
a = −1

2

∫
dσ e− i

2 x−
[
iθα(2P Y + iY )a + (2P Z − iZ)αη†

a − θ †αY ′
a − iZ′αηa

+ εαβεab

(
iθβ(2P Y + iY )b + (2P Z − iZ)βη†b − θ

†
βY ′b − iZ′

βηb
)]

(A.14)

Q̄α
a = 1

2

∫
dσ e

i
2 x−

[
iθ †

α(2P Y − iY )a − (2P Z + iZ)αηa + θαY ′a − iZ′
αη†a

+ εαβεab
(
iθ †β(2P Y − iY )b − (2P Z + iZ)βηb + θβY ′

b − iZ′βη
†
b

)] = (
Qα

a

)†
. (A.15)

Moreover the su(2) generators Rα
β and La

b can be computed using the basis of (3.17) and
(3.18). They read

Rα
β =

∫
dσ

(
i[(P Z)αZβ − (P Z)βZα] +

i

2
δα
β [(P Z)γ Zγ − (P Z)γ Zγ ]

+ θ
†
βθα − θ †αθβ +

1

2
δα
β

[
θ †γ θγ − θ †

γ θγ
])

(A.16)

La
b =

∫
dσ

(
i[(P Y )aYb − (P Y )bY

a] +
i

2
δa
b [(P Y )cY

c − (P Y )cYc]

+ η
†
bη

a − η†aηb +
1

2
δa
b

[
η†cηc − η†

cη
c
])

. (A.17)

Using the above expressions for the supersymmetry generators, it is straightforward to compute
their quantum anti-commutators. One indeed finds{

Qα
a, Q̄β

b
} = δb

aR
α

β + δα
βLb

a + 1
2δb

aδ
α
βH (A.18)
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with the Hamiltonian

H = 2
∫

dσ

[
(P Z)γ (P Z)γ + (P Y )c(P Y )c +

1

4
(Zγ Zγ + Z′γ Z′

γ + Y cYc + Y ′cY ′
c)

+
1

2

(
θ †γ θγ + θ †

γ θγ + η†cηc + η†
cη

c
)

+
1

2

(
θ †′
γ θ †γ − θ ′γ θγ + η†′

c η†c − η′cηc

) − 2δ(0)

]
.

(A.19)

The normal ordering contribution −2δ(0) of the fermions will cancel against the ground
state energy of the bosons by supersymmetry upon introduction of creation and annihilation
operators.

The su(2) generators Rα
β and La

b (A.17) and (A.16) can be shown to obey the
commutation relations[

Rα
β, Rγ

δ

] = δ
γ

β Rα
δ − δα

δ Rγ
β,

[
La

b, L
c
d

] = δc
bL

a
d − δa

dL
c
b. (A.20)

Next we turn to the quantum anticommutator {Qα
a,Q

β
b} which evaluates to{

Qα
a,Q

β
b

} = i

2ζ
εαβεab

∫
dσ e−ix−x ′

− +
∫

dσ1 dσ2 δ(σ1 − σ2)
(
∂σ1 + ∂σ2

)
δ(σ1 − σ2).

We see that the potential last quantum anomaly cancels and we recover the central charge
announced in (3.19) also at the quantum level. The analogous computation for

{
Q̄α

a, Q̄
β

b

}
follows from conjugation.

Finally let us stress that in the above computations we have freely performed partial
integrations by dropping contributions arising from the vertex operators e±ix− , as these would
take us beyond the leading quadratic field approximation. These terms where dealt with,
however, at the classical level up to order O(ζ ) as discussed in section 4.

A.5. The su(2|2)R supercharge at quartic field order

Here we spell out the contribution to the right (blue) supercharges at quartic field order (O(ζ 2))

explicitly, restricting to the terms linear in fermions whose Poisson brackets yield the quartic
bosonic Hamiltonian

Qa
α

∣∣
f bbb

=
∫

dσe−ix−/2

{
(θαYa + εαβεabθβY b)

[
− i

4
(P Y ) ◦ Y − 1

2
Hbos

]
+ (θα(2P Y − iY )a + εαβεabθβ(2P Y − iY )b)

[ i

4
Y ◦ Y

]
+
(
θ †αYa + εαβεabθ

†
βY b

) [ i

4
(P Y ◦ Y ′ + P Z ◦ Z′) +

1

4
Z ◦ Z′ − 1

8
Y ◦ Y ′

]
+
(
θ †αY ′

a + εαβεabθ
†
βY ′b) [1

2
Z ◦ Z − 1

4
Y ◦ Y

]
+
(
η†

aZ
α + εαβεabη

†bZβ

) [−1

4
(P Z) ◦ Z +

i

2
Hbos

]
+
(
η†

a(2P Z + iZ)α + εαβεabη
†b(2P Z + iZ)β

) [1

4
Z ◦ Z

]
+ (ηaZ

α + εαβεabη
bZβ)

[
1

4
(P Y ◦ Y ′ + P Z ◦ Z′) − i

4
Y ◦ Y ′ +

i

8
Z ◦ Z′

]
+ (ηaZ

′α + εαβεabη
bZ′

β)
[
− i

2
Y ◦ Y +

i

4
Z ◦ Z

]}
, (A.21)
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where we have used the notation (P Z) ◦ Z := (P Z)γ Zγ + (P Z)γ Zγ and (P Y ) ◦ Y :=
(P Y )cY

c +(P Y )cYc, etc. Also Hbos denotes the bosonic part of the free (quadratic) Hamiltonian
(A.19). Similar expression follow for the left (red) supercharges.

A.6. The explicit form of the su(2|2)L generators

We denote all the generators appearing in the left (red) su(2|2)L algebra by lower case letters
(with the exception of the common central charges). For the left (red) supercharges we take
as a basis

q1
1 = 1

2 str Qσ + ⊗ (�14 + �23 + P+)

q2
2 = − 1

2 str Qσ + ⊗ (�14 + �23 − P+)

q1
2 = str Qσ + ⊗ �12

q2
1 = str Qσ + ⊗ �34.

(A.22)

One then finds at quadratic field order

q1
1 = 1

2

∫
dσ eix−/2[(2P Z + iZ)γ θγ + iZ′γ θ †

γ + i(2P Y − iY )cη
†c + Y ′

cη
c
]

q2
2 = 1

2

∫
dσ eix−/2

[
(2P Z + iZ)γ θγ + iZ′

γ θ †γ + i(2P Y − iY )cη†
c + Y ′cηc

]
q1

2 = 1

2

∫
dσ eix−/2[εαβ((2P Z + iZ)αθβ + iZ′αθ †β) − εab(i(2P Y − iY )aη†b + Y ′aηb)]

q2
1 = −1

2

∫
dσ eix−/2

[
εαβ

(
(2P Z + iZ)αθβ + iZ′

αθ
†
β

) − εab
(
i(2P Y − iY )aη

†
b + Y ′

aηb

)]
(A.23)

and their complex conjugated partners q̄A
B . These generators can be shown to anti-commute

with the right (blue) supercharges Qα
a and Q̄α

a , their commutation with the right (blue) su(2)

generators Rα
β and La

b is manifest due to the (right) covariant notation.
Translating these charges into the barred coordinates with the flipped ‘2’ index of (A.14)

enables one to write the left (red) supercharges covariantly

qA
B = 1

2

∫
dσ eix−/2

[
(2p̄Z + iZ̄)Aθ̄B + iZ̄′Aθ̄

†
B + i(2p̄Y − iȲ )B η̄†A + Ȳ ′

Bη̄A

+ εACεBD

(
(2p̄Z + iZ̄)Cθ̄D + iZ̄′

Cθ̄ †D + i(2p̄Y − iZ̄)Dη̄
†
C + Ȳ ′Dη̄C

)]
(A.24)

and the complex conjugate expression q̄A
B . Here we note the conjugation properties

(Z̄A)† = Z̄A, (θ̄A)† = θ̄ †A,
(
p̄Z

A

)† = (p̄Z)A, etc. One then computes the anti-commutator{
qA

B, q̄C
D
} = −δA

C lDB − δD
B rA

C + 1
2δA

CδD
B H (A.25)

with the same quadratic Hamiltonian H appearing in the su(2|2)L algebra. The bosonic su(2)

generators appearing on the right-hand side are given by

rA
B = i[(p̄Z)AZ̄B − (p̄Z)BZ̄A] +

i

2
δA
B [(p̄Z)CZ̄C − (p̄Z)CZ̄C]

− [(η̄†)Aη̄B − (η̄†)Bη̄A] +
1

2
δA
B [(η̄†)Cη̄C − (η̄†)Cη̄C], (A.26)

lAB = i[(p̄Y )AȲ B − (p̄Y )BȲ A] +
i

2
δA
B [(p̄Y )CȲ C − (p̄Y )CȲ C]

− [(θ̄ †)Aθ̄B − (θ̄ †)B θ̄A] +
1

2
δA
B [(θ̄ †)Cθ̄C − (θ̄ †)Cθ̄C]. (A.27)

They are traceless and obey the su(2) algebra.
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Finally one again computes the anti-commutator{
qA

B, qC
D

} = − i

2
εACεBD

∫
dσ eix− [(P Z) ◦ Z′ + (P Y ) ◦ Y ′ + i(θ † ◦ θ ′ + η† ◦ η′)]

giving rise to the level-matching condition as we had in the right (blue) algebra. We note that
the right-hand side of the above takes the same form in barred or unbarred variables.

A.7. The centrality of the level-matching and Hamiltonian

In this section, we show that the level-matching generator pws and the Hamiltonian do Possion-
commute with all the generators of the su(2|2) ⊕ su(2|2) algebra. The explicit computation
follows the logic of section 4.

Since we would like to work in the limit of infinite P+ we also have to suppress the
corresponding conjugate zero mode x−. We pick up a solution for the unphysical field x−(s)

which obeys the boundary condition x−(−∞) = 0. It reads as

x−(s) = −ζ

∫ s

−∞
dω

(
pMx ′

M − i

2
str(+χχ ′)

)
.

Using the canonical Poisson brackets it is easy to find

1

ζ
{pM(σ), x−(s)} = δ(σ − s)pM(σ) − p′

M(σ)ε(s − σ),

1

ζ
{xM(σ), x−(s)} = −x ′

M(σ)ε(s − σ),

1

ζ
{x ′

M(σ), x−(s)} = −x ′′
M(σ)ε(s − σ) + x ′

M(σ)δ(σ − s),

1

ζ
{χ(σ), x−(s)} = 1

2
δ(σ − s)χ(σ ) − χ ′(σ )ε(s − σ).

(A.28)

Here ε(s) is the standard step function

ε(s) =
{

1, s � 0,

0, s < 0,
(A.29)

which satisfies the condition ε(s) + ε(−s) = 1. The reader can easily verify the validity of
these formulae by considering, e.g., the Jacobi identity.

First, using these formulae one can check that the supercharges commute with the level-
matching generator. Introducing the level-matching generator

pws = −ζ

∫ ∞

−∞
dω

(
pMx ′

M − i

2
str(+χχ ′)

)
it is easy to see that

1

ζ
{pws, xM(s)} = x ′

M(s),
1

ζ
{pws, pM(s)} = p′

M(s),
1

ζ
{pws, χ(s)} = χ ′(s)

and, therefore,
1

ζ
{pws, x−(s)} = −ζ

(
pMx ′

M − i

2
str(+χχ ′)

)
(s) = x ′

−(s).

Thus,
1

ζ
{pws,Q} =

∫
∂sQ = 0

provided all the fields rapidly decrease at infinity.



3604 G Arutyunov et al

Note that x−(s) is quadratic in fermions, while we are interested in the contribution to
the Poisson bracket of H and Q which is linear in fermions. This observation implies that
computing the Poisson bracket of the Hamiltonian with eiαx−(s) it is enough to use instead of
the full H the quadratic bosonic Hamiltonian with the density Hb

2(σ ). Using the basic Poisson
brackets it is easy to find

1

ζ

{
Hb

2(σ ), x−(s)
} = (

p2
M + x ′2

M

)
δ(σ − s) − ∂σHb

2ε(s − σ).

Finally, to verify the centrality of the Hamiltonian up to order ζ we have to compute

{H,Q} =
∫ ∫

dσ ds
[{
Hb

2, eiαx−
}
�2 + eiαx−({H2,�2} + ζ {H4,�2} + ζ {H2,�4})

]
+ · · · .

Here the integrals are taken from −∞ to +∞ and to simplify the notation we do not exhibit
the dependence of functions � on physical fields. We have

{H,Q} = iαζ

∫
ds eiαx−

(
p2

M + x ′2
M − Hb

2

)
�2

+
∫ ∫

dσ ds eiαx−({H2,�2} + ζ {H4,�2} + ζ {H2,�4}).
The further computation is straightforward and it uses explicit expressions for �2,4 in terms
of transverse fields. We note that the Poisson bracket

{H2,�2} + ζ {H4,�2} + ζ {H2,�4} (A.30)

contains terms proportional to δ(σ − s), δ′(σ − s) and δ′′(σ − s) which reduces the double
integration to a single one. Moreover, according to our assumptions about the orders of
perturbation theory we are working on, in the expression (A.30) only the terms linear in
fermions should be taken into account. This means, in particular, that in this specific
computation only the terms in H4 which are quadratic in fermions matter. Evaluating the
brackets under these assumptions we find that up to the order ζ the integrand appears to be a
total derivative and therefore vanishes for fields with rapidly decreasing boundary conditions.
Thus, with our assumptions we have verified that

{H,Q} = 0,

i.e. the Hamiltonian commutes with all dynamical supercharges. It is not difficult to extend
this treatment to higher orders in fermions and in ζ but it is already clear that we will not
find any anomaly because of a rigid structure of the supersymmetry algebra: the complete
Hamiltonian will commute with all dynamical supercharges.
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